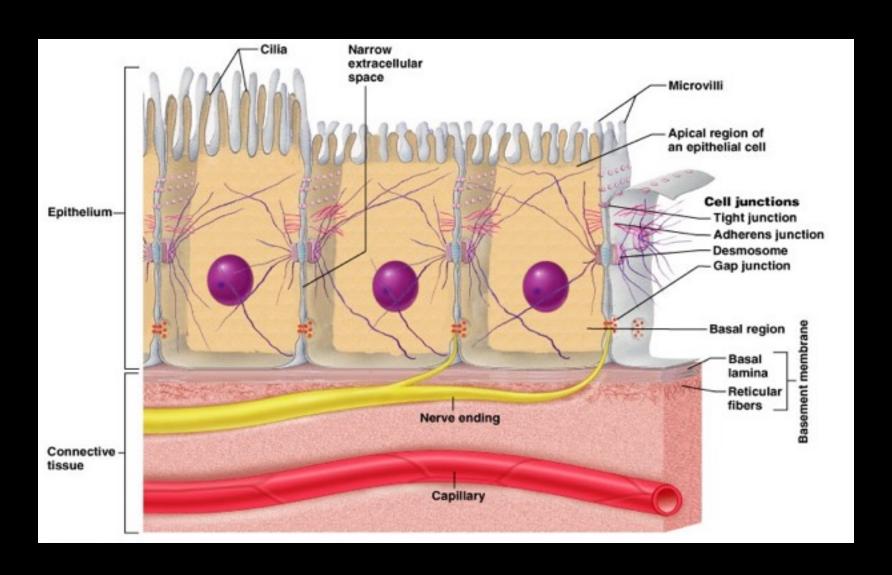


Tissues

- Cells work together in functionally related groups called tissues
- Types of tissues:
 - Epithelial lining and covering
 - 2. Connective support
 - 3. Muscle movement
 - 4. Nervous control

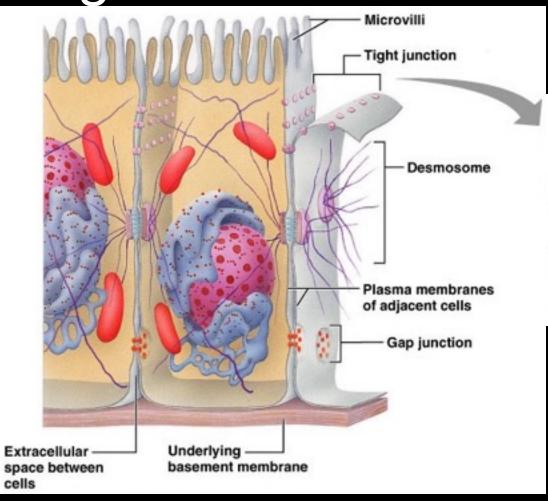

Epithelial Tissue – General Characteristics & Functions

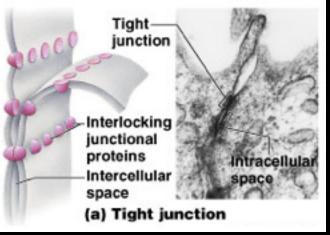
- Covers a body surface or lines a body cavity
- Forms most glands
- Functions of epithelium
 - Protection
 - Absorption, secretion, and ion transport
 - □ Filtration
 - Forms slippery surfaces

Special Characteristics of Epithelia

- Cellularity
 - cells are in close contact with each other with little or no intercellular space between them
- Specialized contacts
 - may have junctions for both attachment and communication
- Polarity
 - epithelial tissues always have an apical and basal surface
- Support by connective tissue
 - at the basal surface, both the epithelial tissue and the connective tissue contribute to the basement membrane
- Avascular
 - nutrients must diffuse
- Innervated
- Regeneration
 - epithelial tissues have a high capacity for regeneration

Special Characteristics of Epithelia


Lateral Surface Features


- Factors holding epithelial cells together
 - Adhesion proteins link plasma membranes of adjacent cells
 - Contours of adjacent cell membranes
 - Special cell junctions
 - Tight Junctions
 - Adherens Junctions
 - Desmosomes

Lateral Surface Features – Cell Junctions

- Tight junctions (zona occludens) close off intercellular space
 - Found at apical region of most epithelial types
 - Some proteins in plasma membrane of adjacent cells are fused
 - Prevent molecules from passing between cells of epithelial tissue

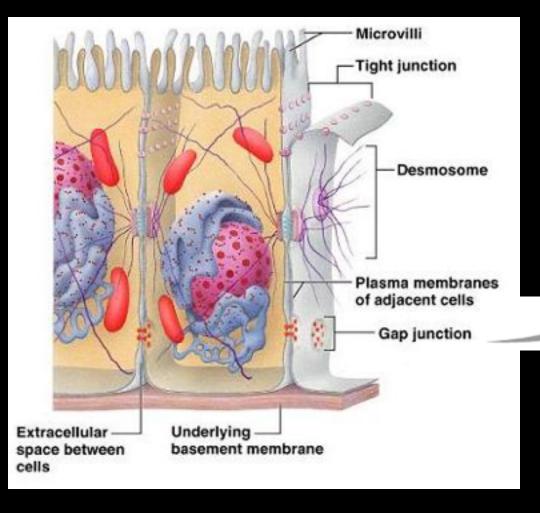
Tight Junction

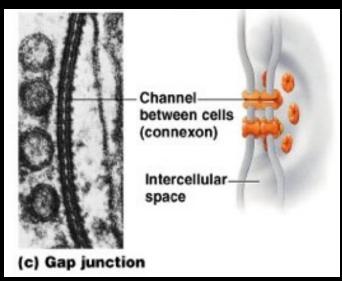

Lateral Surface Features – Cell Junctions

- Adherens junctions (zonula adherens) anchoring junction
 - Transmembrane linker proteins attach to actin microfilaments of the cytoskeleton and bind adjacent cells
 - Along with tight junctions, form the tight junctional complex around apical lateral borders of epithelial tissues

Lateral Surface Features – Cell Junctions

- Desmosomes two disc-like plaques connected across intercellular space
 - Plaques of adjoining cells are joined by proteins called cadherins
 - Proteins interdigitate into extracellular space
 - Intermediate filaments insert into plaques from cytoplasmic side


Desmosome



Lateral Surface Features – Cell Junctions

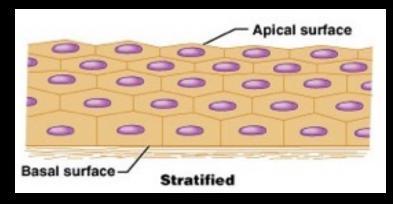
- Gap junctions passageway between two adjacent cells
 - Let small molecules move directly between neighboring cells
 - Cells are connected by hollow cylinders of protein

Gap Junction

Basal Feature: The Basal Lamina

- Noncellular supporting sheet between the epithelium and the connective tissue deep to it
- Consists of proteins secreted by the epithelial cells
- Functions:
 - Acts as a selective filter, determining which molecules from capillaries enter the epithelium
 - Acts as scaffolding along which regenerating epithelial cells can migrate
- Basal lamina and reticular layers of the underlying connective tissue deep to it form the basement membrane

Epithelial Tissues


Classifications & Naming of Epithelia

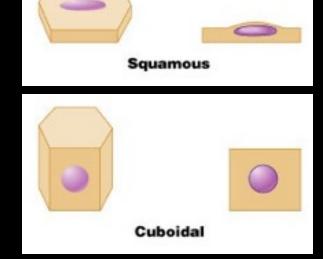
 First name of tissue indicates number of layers

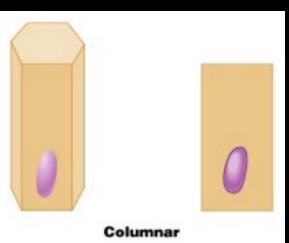
□ Simple – one layer of cells

Basal surface
Simple

Stratified – more than one layer of cells

Classification & Naming of Epithelia


Last name of tissue describes shape of


cells

Squamous – cells wider than tall (plate or "scale" like)

Cuboidal – cells are as wide as tall, as in cubes

Columnar – cells are taller than they are wide, like columns

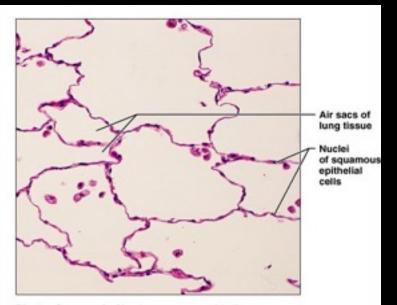
Naming Epithelia

- Naming the epithelia includes both the layers (first) and the shape of the cells (second)
 - i.e. stratified cuboidal epithelium
- The name may also include any accessory structures
 - Goblet cells
 - Cilia
 - Keratin
- Special epithelial tissues (don't follow naming convention)
 - Psuedostratified
 - Transitional

Simple Squamous Epithelium

- Description
 - single layer of flat cells with disc-shaped nuclei
- Special types
 - Endothelium (inner covering)
 - slick lining of hollow organs
 - Mesothelium (middle covering)
 - Lines peritoneal, pleural, and pericardial cavities
 - Covers visceral organs of those cavities

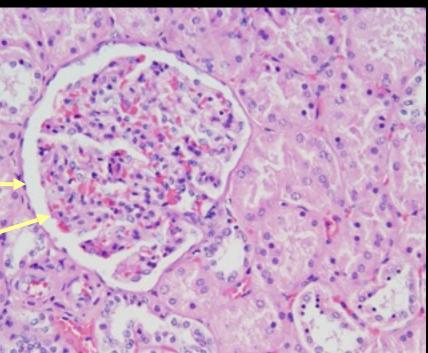
Simple Squamous Epithelium


Function

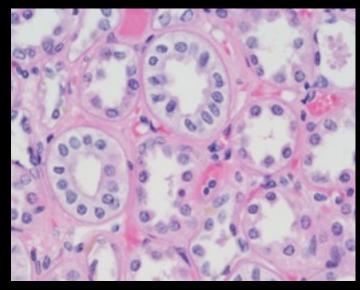
- Passage of materials by passive diffusion and filtration
- Secretes lubricating substances in serosae

Location

- Renal corpuscles
- Alveoli of lungs
- Lining of heart, blood and lymphatic vessels
- Lining of ventral body cavity (serosae)


Simple Squamous Epithelium

Photomicrograph: Simple squamous epithelium forming part of the alveolar (air sac) walls (400×).

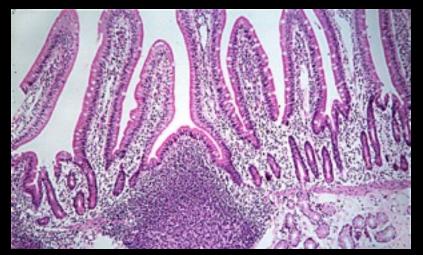

Simple squamous lining the walls of the capillary

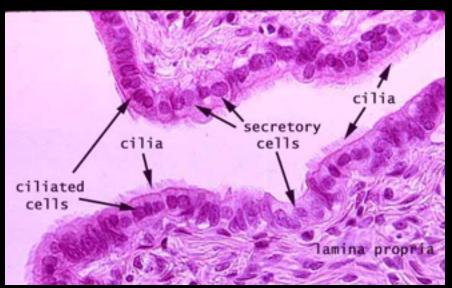
Simple Cuboidal Epithelium

- Description
 - single layer of cube-like cells with large, spherical central nuclei
- Function
 - secretion and absorption
- Location
 - kidney tubules, secretory portions of small glands, ovary & thyroid follicles

Simple Columnar Epithelium

Description


- single layer of column-shaped (rectangular) cells with oval nuclei
 - Some bear cilia at their apical surface
 - May contain goblet cells


Function

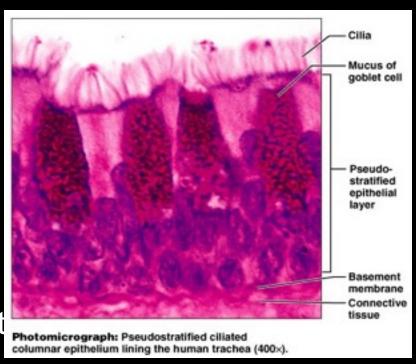
- Absorption; secretion of mucus, enzymes, and other substances
- Ciliated type propels mucus or reproductive cells by ciliary action

Simple Columnar Epithelium

- Location
 - Non-ciliated form
 - Lines digestive tract, gallbladder, ducts of some glands
 - Ciliated form
 - Lines small bronchi, uterine tubes, uterus

Pseudostratified Columnar Epithelium

Description


- All cells originate at basement membrane
- Only tall cells reach the apical surface
- May contain goblet cells and bear cilia
- Nuclei lie at varying heights within cells
 - Gives false impression of stratification

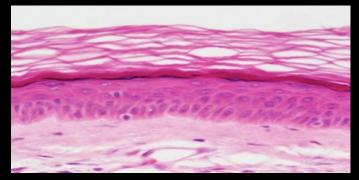
Function

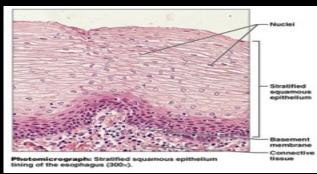
secretion of mucus; propulsion of mucus by cilia

Pseudostratified Columnar Epithelium

- Locations
 - Non-ciliated type
 - Ducts of male reproductive tubes
 - Ducts of large glands
 - Ciliated variety
 - Lines trachea and most of upper respiratory tract

Stratified Epithelia


- Contain two or more layers of cells
- Regenerate from below
- Major role is protection
- Are named according to the <u>shape of cells</u> at apical layer


Stratified Squamous Epithelium

- Description
 - Many layers of cells squamous in shape
 - Deeper layers of cells appear cuboidal or columnar
 - Thickest epithelial tissue adapted for protection

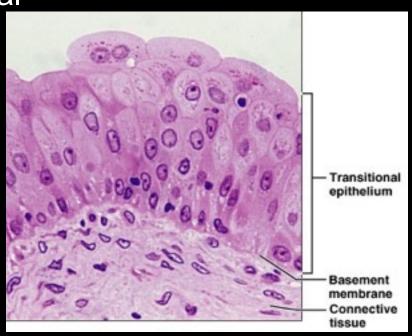
Stratified Squamous Epithelium

- Specific types
 - Keratinized contain the protective protein keratin
 - Surface cells are dead and full of keratin
 - Non-keratinized forms moist lining of body openings
- Function
 - Protects underlying tissues in areas subject to abrasion
- Location
 - Keratinized forms epidermis
 - Non-keratinized forms lining of esophagus, mouth, and vagina

Transitional Epithelium

Description

Basal cells usually cuboidal or columnar

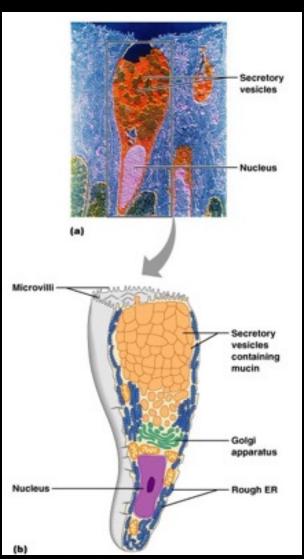

Superficial cells domeshaped or squamous

Function

stretches and permits distension of urinary bladder

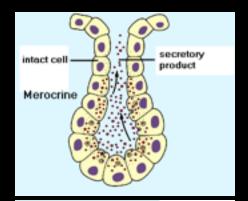
Location

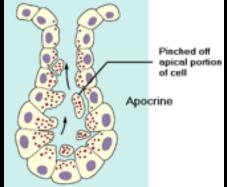
Lines ureters, urinary bladder and part of urethra

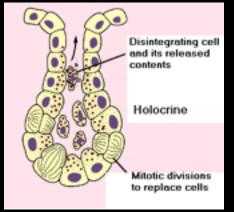


Glandular Epithelium

- Ducts carry products of exocrine glands to epithelial surface
- Include the following diverse glands
 - Mucus-secreting glands
 - Sweat and oil glands
 - Salivary glands
 - Liver and pancreas
 - Mammary glands
- May be: unicellular or multicellular


Unicellular Exocrine Glands (The Goblet Cell)


- Goblet cells produce mucin
- Mucin + water → mucus
- Protects and lubricates many internal body surfaces

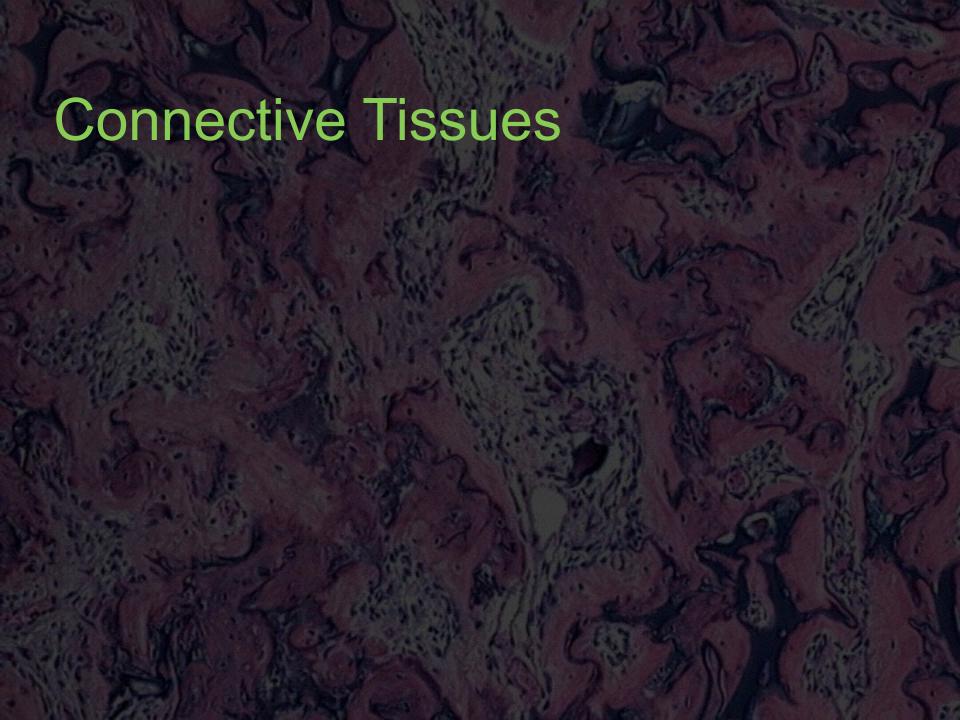


Multicellular Exocrine Glands

- Classified by structure (branching & shape) of duct
- Can also be classified by mode or type of secretion
 - Merocrine secretion secretory vesicles released via exocytosis (saliviary glands)
 - Apocrine secretion apical portion of the cell is lost, cytoplasm + secretory product (mammary glands)
 - Holocrine secretion entire cell is destroyed during secretion (sebaceous gland)

May also be classified by types of secretions from exocrine glands

Serous

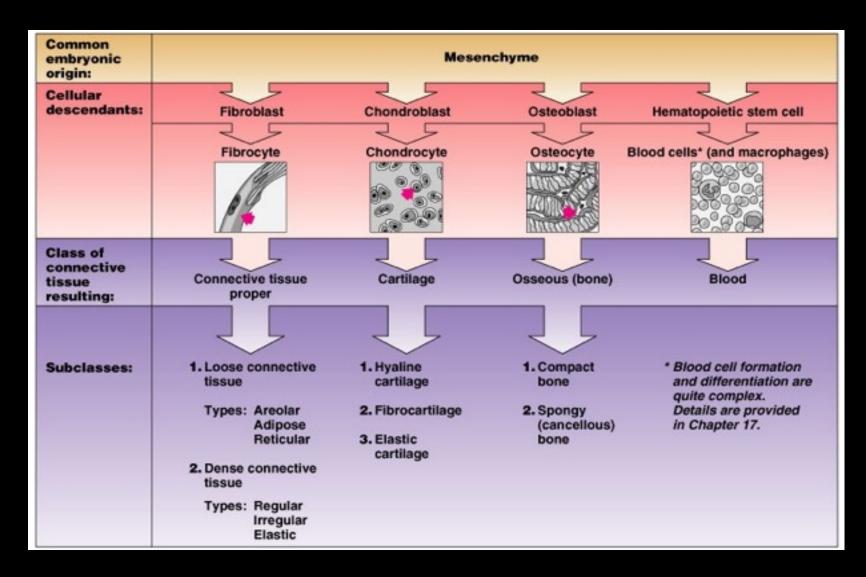

- mostly water but also contains some enzymes
- Ex. parotid glands, pancreas

• Mucous

- mucus secretions
- Ex. sublingual glands, goblet cells

Mixes

- serous & mucus combined
- Ex. submandibular gland



Connective Tissue

- Most diverse and abundant tissue
- Main classes
 - Connective tissue proper
 - Blood Fluid connective tissue

 - □ Bone tissue ➤ Supporting connective tissues
- Components of connective tissue:
 - Cells (varies according to tissue)
 - Matrix
 - Protein fibers (varies according to tissue)
 - Ground substance (varies according to tissue)
- Common embryonic origin mesenchyme

Classes of Connective Tissue

Connective Tissue Proper - Structures

- Variety of cells, fibers & grounds substances
 - Types of depend on use
- Cells found in connective tissue proper
 - Fibroblasts
 - Macrophages, lymphocytes (antibody producing cells)
 - Adipocytes (fat cells)
 - Mast cells
 - Stem cells

Fibers:

- Collagen very strong & abundant, long & straight
- Elastic branching fibers with a wavy appearance (when relaxed)
- Reticular form a network of fibers that form a supportive framwork in soft organs (i.e. Spleen & liver)

Ground substance:

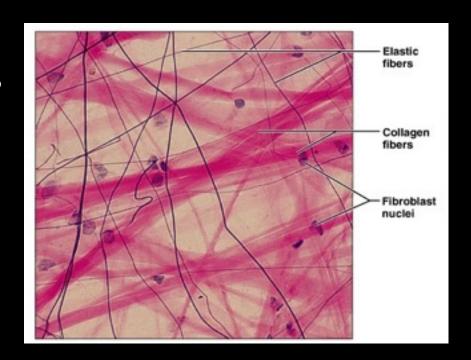
- Along with fibers, fills the extracellular space
- Ground substance helps determine functionality of tissue

Connective Tissue Proper - Classifications

- Loose Connective Tissue
 - □ Areolar
 - □ Reticular
 - Adipose
- Dense Connective Tissue
 - Regular
 - Irregular
 - Elastic

Areolar Connective Tissue

Description


- Gel-like matrix with:
 - all three fiber types (collagen, reticular, elastic) for support
 - Ground substance is made up by glycoproteins also made and secreted by the fibroblasts.
- Cells fibroblasts, macrophages, mast cells, white blood cells, adipocytes
- Highly vascular tissue

Function

- Wraps and cushions organs
- Holds and conveys tissue fluid
- Important role in inflammation
- Main battlefield in fight against infection

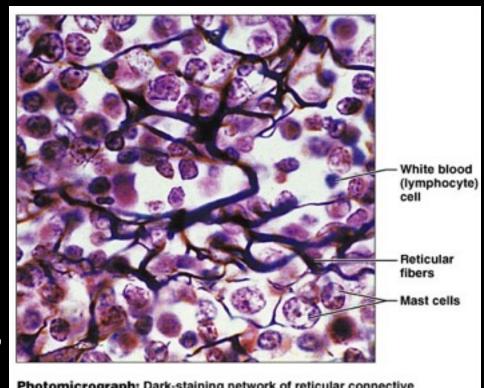
Areolar Connective Tissue

- Location
 - Widely distributed under epithelia
 - Packages organs
 - Surrounds capillaries


Adipose Tissue

Description

- Closely packed adipocytes
- Have nucleus pushed to one side by fat droplet Function
- Provides reserve food fuel
- Insulates against heat loss
- Supports and protects organs


Location

- Under skin
- Around kidneys
- Behind eyeballs, within abdomen and in breasts

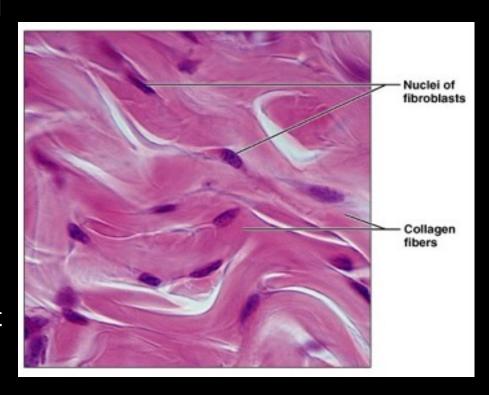
Reticular Connective Tissue

- Description network of reticular fibers in loose ground substance
- Function form a soft,internal skeleton (stroma)– supports other cell types
- Location lymphoid organs
 - Lymph nodes, bone marrow, and spleen

Photomicrograph: Dark-staining network of reticular connective tissue fibers forming the internal skeleton of the spleen (350x).

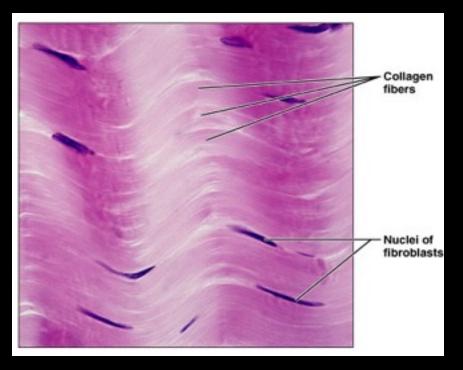
Dense Irregular Connective Tissue

Description


- Primarily irregularly arranged collagen fibers
- Some elastic fibers and fibroblasts

Function

- Withstands tension
- Provides structural strength


Location

- Dermis of skin
- Submucosa of digestive tract
- Fibrous capsules of joints and organs

Dense Regular Connective Tissue

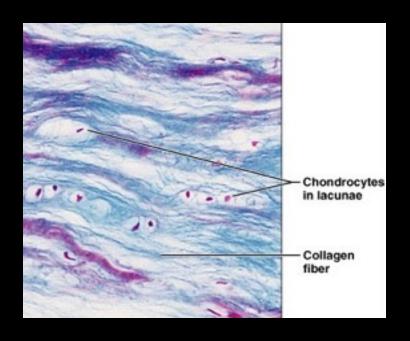
- Description
 - Primarily parallel collagen fibers
 - □ Fibroblasts and some elastic fibers
 - Poorly vascularized
- Function
 - Attaches muscle to bone
 - Attaches bone to bone
 - Withstands great stress in one direction
- Location
 - Tendons and ligaments
 - Aponeuroses
 - Fascia around muscles


Cartilage

- Characteristics:
 - Firm, flexible tissue
 - Contains no blood vessels or nerves
 - Matrix contains up to 80% water
 - Cell type chondrocyte
- Types:
 - Hyaline
 - Elastic
 - Fibrocartilage


Hyaline Cartilage

- Description
 - Imperceptible collagen fibers (hyaline = glassy)
 - Chodroblasts produce matrix
 - Chondrocytes lie in lacunae
- Function
 - Supports and reinforces
 - Resilient cushion
 - Resists repetitive stress
- Location
 - Ends of long bones
 - Costal cartilage of ribs
 - Cartilages of nose, trachea, and larynx Location

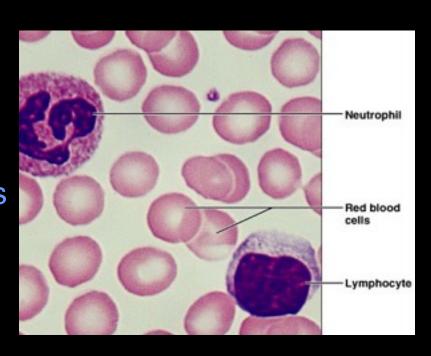

Elastic Cartilage

- Description
 - Similar to hyaline cartilage
 - More elastic fibers in matrix
- Function
 - Maintains shape of structure
 - Allows great flexibility
- Location
 - Supports external ear
 - Epiglottis

Fibrocartilage

- Description
 - Matrix similar, but less firm than hyaline cartilage
 - Thick collagen fibers predominate
- Function
 - Tensile strength and ability to absorb compressive shock
- Location
 - Intervertebral discs
 - Pubic symphysis
 - Discs of knee joint

Bone Tissue


Function

- Supports and protects organs
- Provides levers and attachment site for muscles
- Stores calcium and other minerals
- Stores fat
- Marrow is site for blood cell formation
- Location
 - Bones

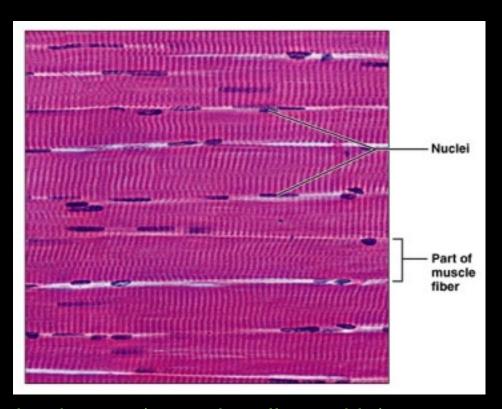
Blood Tissue

- Description
 - red and white blood cells in a fluid matrix
- Function
 - transport of respiratory gases, nutrients, and wastes
- Location
 - within blood vessels
- Characteristics
 - An atypical connective tissue
 - Consists of cells surrounded by fluid matrix

Covering and Lining Membranes

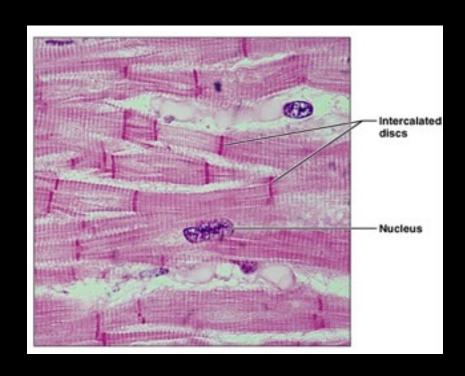
- Combine epithelial tissues and connective tissues
- Cover broad areas within body
- Consist of epithelial sheet plus underlying connective tissue

Types of Membranes

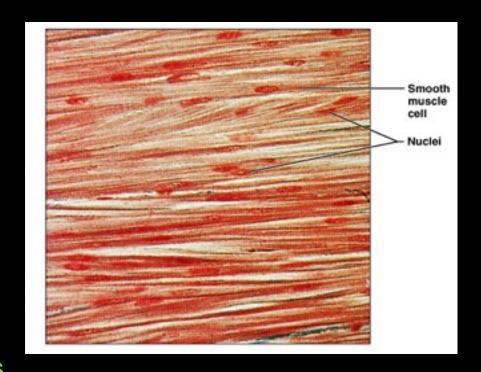

- Cutaneous membrane skin
- Mucous membrane
 - Lines hollow organs that open to surface of body
 - An epithelial sheet underlain with layer of lamina propria
- Serous membrane slippery membranes
 - Simple squamous epithelium lying on areolar connective tissue
 - Line closed cavities
 - Pleural, peritoneal, and pericardial cavities
- Synovial membranes lining joint cavities
 - Loose connective (areolar) + simple squamous epithelium
 - Secretes fluid (synovial fluid) which lubricates, protects & cushions joint structures

Muscle Tissue

- Types
 - □ Skeletal muscle tissue
 - □ Cardiac muscle tissue
 - □ Smooth muscle tissue


Skeletal Muscle Tissue

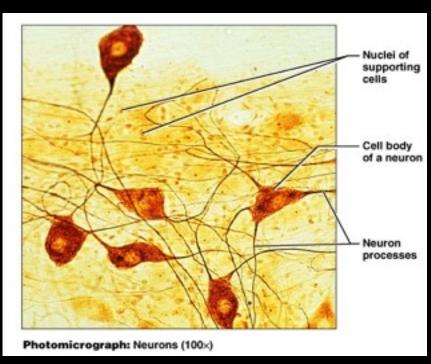
- Characteristics
 - Long, cylindrical cells
 - Multinucleate
 - Obvious striations
- Function
 - Voluntary movement
 - Manipulation of environment
 - Facial expression
- Location
 - Skeletal muscles attached to bones (occasionally to skin)


Cardiac Muscle Tissue

- Function
 - Contracts to propel blood into circulatory system
- Characteristics
 - Branching cells
 - Uni-nucleate
 - Intercalated discs
- Location
 - Occurs in walls of heart

Smooth Muscle Tissue

- Characteristics
 - Spindle-shaped cells with central nuclei
 - Arranged closely to form sheets
 - No striations
- Function
 - Propels substances along internal passageways
 - Involuntary control
- Location
 - Mostly walls of hollow organs



Nervous Tissue

Function

- Transmit electrical signals from sensory receptors to effectors
- Location
 - Brain, spinal cord, and nerves
- Description
 - Main components are brain, spinal cord, and nerves
 - Contains two types of cells
 - Neurons excitatory cells
 - Supporting cells (neuroglial cells)

Tissue Response to Injury

- Restoration involves
 - Inflammation
 - □ Regeneration (repair)
- Inflammation
 - Due to something that damages/kills cells or fibers or in some way damage tissue, causing . . .
 - Swelling
 - Warmth
 - Redness
 - Pain
 - These common conditions are a result of mast cell activation – releases vasodilators such as histamine

Tissue Response to Injury

Goal:

Restore normal function to tissue

Process:

- Fibroblasts activated to produce fibrous tissue
- Usually remodeled over time

Challenges

- Some tissues are non-vascular and will repair very slowly
- If excitable tissue is replaced by scar tissue function is lost!

The Tissues Throughout Life

- Early on Gastrulation
 - □ The most important time in your life!!
 - This is when tissues differentiate mess up here and you don't develop correctly
- At the end of second month of development:
 - Primary tissue types have appeared
 - Major organs are in place
- Adulthood
 - Only a few tissues regenerate
 - Many tissues still retain populations of stem cells
- With increasing age:
 - Epithelia thin
 - Collagen decreases
 - Bones, muscles, and nervous tissue begin to atrophy
 - Poor nutrition and poor circulation poor health of tissues
 - Increased chance of developing cancer